MinK-dependent internalization of the IKs potassium channel.

نویسندگان

  • Xianghua Xu
  • Vikram A Kanda
  • Eun Choi
  • Gianina Panaghie
  • Torsten K Roepke
  • Stephen A Gaeta
  • David J Christini
  • Daniel J Lerner
  • Geoffrey W Abbott
چکیده

AIMS KCNQ1-MinK potassium channel complexes (4alpha:2beta stoichiometry) generate IKs, the slowly activating human cardiac ventricular repolarization current. The MinK ancillary subunit slows KCNQ1 activation, eliminates its inactivation, and increases its unitary conductance. However, KCNQ1 transcripts outnumber MinK transcripts five to one in human ventricles, suggesting KCNQ1 also forms other heteromeric or even homomeric channels there. Mechanisms governing which channel types prevail have not previously been reported, despite their significance: normal cardiac rhythm requires tight control of IKs density and kinetics, and inherited mutations in KCNQ1 and MinK can cause ventricular fibrillation and sudden death. Here, we describe a novel mechanism for this control. METHODS AND RESULTS Whole-cell patch-clamping, confocal immunofluorescence microscopy, antibody feeding, biotin feeding, fluorescent transferrin feeding, and protein biochemistry techniques were applied to COS-7 cells heterologously expressing KCNQ1 with wild-type or mutant MinK and dynamin 2 and to native IKs channels in guinea-pig myocytes. KCNQ1-MinK complexes, but not homomeric KCNQ1 channels, were found to undergo clathrin- and dynamin 2-dependent internalization (DDI). Three sites on the MinK intracellular C-terminus were, in concert, necessary and sufficient for DDI. Gating kinetics and sensitivity to XE991 indicated that DDI decreased cell-surface KCNQ1-MinK channels relative to homomeric KCNQ1, decreasing whole-cell current but increasing net activation rate; inhibiting DDI did the reverse. CONCLUSION The data redefine MinK as an endocytic chaperone for KCNQ1 and present a dynamic mechanism for controlling net surface Kv channel subunit composition-and thus current density and gating kinetics-that may also apply to other alpha-beta type Kv channel complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Channel Characteristics of Wild-Type IKs Channels and Channels formed with Two MinK Mutants that Cause Long QT Syndrome

IKs channels are voltage dependent and K+ selective. They influence cardiac action potential duration through their contribution to myocyte repolarization. Assembled from minK and KvLQT1 subunits, IKs channels are notable for a heteromeric ion conduction pathway in which both subunit types contribute to pore formation. This study was undertaken to assess the effects of minK on pore function. We...

متن کامل

Expression of a minimal K+ channel protein in mammalian cells and immunolocalization in guinea pig heart.

The minimal K+ channel protein (minK, also called IsK) is structurally dissimilar to other cloned voltage-gated ion channels. minK is a 15-kD polypeptide with only one potential transmembrane helix. Published data suggest that the current associated with minK expression in Xenopus oocytes may be related to the slow cardiac delayed rectifier K+ current (IKs). However, the fact that minK expressi...

متن کامل

Single-Channel Properties of IKs Potassium Channels

Expressed in Xenopus oocytes, KvLQT1 channel subunits yield a small, rapidly activating, voltage- dependent potassium conductance. When coexpressed with the minK gene product, a slowly activating and much larger potassium current results. Using fluctuation analysis and single-channel recordings, we have studied the currents formed by human KvLQT1 subunits alone and in conjunction with human or ...

متن کامل

Differential effects of ginsenoside metabolites on slowly activating delayed rectifier K+ and KCNQ1 K+ channel currents

Channels formed by the co-assembly of the KCNQ1 subunit and the mink (KCNE1) subunit underline the slowly activating delayed rectifier K(+) channels (IKs ) in the heart. This K(+) channel is one of the main pharmacological targets for the development of drugs against cardiovascular disease. Panax ginseng has been shown to exhibit beneficial cardiovascular effects. In a previous study, we showed...

متن کامل

Independent and exclusive modulation of cardiac delayed rectifying K+ current by protein kinase C and protein kinase A.

Expression of minK in Xenopus oocytes results in a current similar to the cardiac slow delayed rectifying K+ (IKs) current. Modulation of the IKs current in cardiac myocytes has been studied extensively because of its role in shaping the cardiac action potential. The human and cat minK cDNA have been cloned, but their regulation by protein kinases has not been characterized. We report here on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 82 3  شماره 

صفحات  -

تاریخ انتشار 2009